Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the simply-static domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6121
用streamlit创建实时看板

用streamlit创建实时看板

如何使用 Streamlit 构建实时仪表板

import time  # to simulate a real time data, time loop

import numpy as np  # np mean, np random
import pandas as pd  # read csv, df manipulation
import plotly.express as px  # interactive charts
import streamlit as st  # 🎈 data web app development

st.set_page_config(
    page_title="Real-Time Data Science Dashboard",
    page_icon="✅",
    layout="wide",
)

# read csv from a github repo
dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-analysis/master/bank.csv"

# read csv from a URL
@st.experimental_memo
def get_data() -> pd.DataFrame:
    return pd.read_csv(dataset_url)

df = get_data()

# dashboard title
st.title("Real-Time / Live Data Science Dashboard")

# top-level filters
job_filter = st.selectbox("Select the Job", pd.unique(df["job"]))

# creating a single-element container
placeholder = st.empty()

# dataframe filter
df = df[df["job"] == job_filter]

# near real-time / live feed simulation
for seconds in range(200):

    df["age_new"] = df["age"] * np.random.choice(range(1, 5))
    df["balance_new"] = df["balance"] * np.random.choice(range(1, 5))

    # creating KPIs
    avg_age = np.mean(df["age_new"])

    count_married = int(
        df[(df["marital"] == "married")]["marital"].count()
        + np.random.choice(range(1, 30))
    )

    balance = np.mean(df["balance_new"])

    with placeholder.container():

        # create three columns
        kpi1, kpi2, kpi3 = st.columns(3)

        # fill in those three columns with respective metrics or KPIs
        kpi1.metric(
            label="Age ⏳",
            value=round(avg_age),
            delta=round(avg_age) - 10,
        )
        
        kpi2.metric(
            label="Married Count 💍",
            value=int(count_married),
            delta=-10 + count_married,
        )
        
        kpi3.metric(
            label="A/C Balance $",
            value=f"$ {round(balance,2)} ",
            delta=-round(balance / count_married) * 100,
        )

        # create two columns for charts
        fig_col1, fig_col2 = st.columns(2)
        with fig_col1:
            st.markdown("### First Chart")
            fig = px.density_heatmap(
                data_frame=df, y="age_new", x="marital"
            )
            st.write(fig)
            
        with fig_col2:
            st.markdown("### Second Chart")
            fig2 = px.histogram(data_frame=df, x="age_new")
            st.write(fig2)

        st.markdown("### Detailed Data View")
        st.dataframe(df)
        time.sleep(1)